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Abstract. We show that the Spivak normal fibration of an orientable 4-dimensional
Poincaré complex has a vector bundle reduction.

1. Introduction

A Poincaré complex (PD-complex ), as introduced by Wall [10, p. 214], is a (connected)
finitely dominated CW complex X equipped with:

(i) a homomorphism w : π1(X) → {±1} defining a twisted Λ := Zπ1(X) module
structure Zt on Z.

(ii) an integer n and a class [X] ∈ Hn(X;Zt) such that
(iii) for all integers r ≥ 0, cap product with [X] induces an isomorphism

[X] _ : Hr(X; Λ)→ Hn−r(X; Λ⊗ Zt) .

The integer n = dimX is called the dimension of X. It follows from the foundational
results of Kirby and Siebenmann [5, Annex 3] that every closed topological n-manifold
has the homotopy type of a Poincaré complex of dimension n (see the discussion in Wall
[11, §17B]). In the manifold case, the homomorphism w : π1(X) → {±1} is given by
the first Stiefel-Whitney class. Accordingly, a PD-complex X is called orientable if its
homomorphism w is trivial.

Spivak [9] discovered that every simply-connected PD-complex X with dimX = n has
an associated spherical fibration, denoted νX , which is unique up to stable fibre homotopy
equivalence. It is constructed by embedding X in a high-dimensional Euclidean space
Rn+k (k � n), and considering the fibration homotopic to the projection map p : ∂N → X
from the boundary of a regular neighbourhood N ⊂ Rn+k. The duality properties of X
imply that the fibres of p are homotopy equivalent to Sk−1. The definition and the
uniqueness statement were generalized by Wall [10, §3] to all PD-complexes, and νX is
now called the Spivak normal fibration of X.

In the smooth manifold case, νX is the spherical fibration associated to the sphere
bundle of the (stable) normal k-vector bundle of X. For topological manifolds, the corre-
sponding notion is the (stable) normal Rk-bundle (k � n), and its sub-bundle with fibres
Rk − {0} ' Sk−1.

After the further development of geometric surgery theory, due to Browder, Milnor,
Novikov, Sullivan and Wall, the normal structures on PD-spaces and manifolds were re-
expressed via classifying spaces (see [11, §10 and §17B], [5], [8], [6]). One outcome was

Date: August 15, 2018.
Research partially supported by NSERC Discovery Grant A4000.

1



2 IAN HAMBLETON

the construction of a sequence of classifying spaces

BO → BPL→ BTOP → BG

relating smooth, PL, and topoogical bundles to spherical fibrations. In particular, the
(stable) Spivak normal fibre space νX is classified by a map νX : X → BG.

Definition 1.1. We say that PD-complex X has a reducible Spivak normal fibration if
the classifying map νX : X → BG lifts to a map ν̃X : X → BTOP .

Similarly, we say that the Spivak normal fibre space is reducible to a vector bundle
if νX lifts to a map ν̃X : X → BO. The lifting obstruction is given by the image of νX
in [X,B(G/TOP )] or [X,B(G/O)], respectively. In dimensions ≥ 5, these are different
problems, but if dimX ≤ 4 these two obstruction groups are the same because

[X,B(G/O)] = [X,B(G/PL)] = [X,B(G/O)] ∼= H3(X;Z/2), if dimX ≤ 4.

This is explained in Kirby-Taylor [6, §2]. In other words, the obstruction to reducibility for
the Spivak normal fibration of a PD-complex X in dimensions ≤ 4 is a single characteristic
class k3(X) ∈ H3(X;Z/2).

Theorem A. Let X be an Poincaré complex. If dimX ≤ 3, or dimX = 4 and X is
orientable, then the Spivak normal fibration of X is reducible to a vector bundle.

Remark 1.2. The dimension 4 case was known to the experts (see the statements in
Spivak [9, p. 95] and Kirby-Taylor [6, p. 10]), but Land [7] pointed out the lack of a
proof in the literature, and provided his own argument. For dimensions ≤ 2 the result
is immediate, and the dimension 3 cases follow easily from the dimension 4 statement.
In general, non-oriented PD-complexes in dimensions ≥ 4 do not have reducible Spivak
normal fibrations (see Hambleton and Milgram [4] for explicit examples in every even
dimension ≥ 4). The first non-reducible orientable example occurs in dimension 5 (see
Gitler and Stasheff [3]).

Acknowledgement. I would like to thank Wolfgang Lück for asking me about this result
at a conference in Regensburg (September, 2017). Andrew Ranicki and Larry Taylor later
outlined alternate arguments, both different from the approach used by Markus Land, and
different from the proof provided in this note.

2. The proof of Theorem A

Here is a short argument to show that an orientable 4-dimensional Poincaré complex
has a reducible Spivak normal fibration. The proof is essentially contained in [4].

1. Suppose that X is an orientable 4-dimensional PD-complex such that νX is not re-
ducible. Then by Poincaré duality there is a class e ∈ H1(X.Z/2) such that

〈k3(X) ∪ e, [X]〉 6= 0,

where k3(X) denotes the pullback to X of the first exotic characteristic class.

2. Let f : X → RP∞ represent the cohomology class e ∈ H1(X;Z/2). Then the element
0 6= (X, f) ∈ N PD

4 (RP∞) has Arf invariant A(X, f) = 1 (see [4], Corollary 4.2, Corollary
5.3, and Theorem 5.6).
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3. By low-dimensional surgery, we may assume that π1(X) = Z/2 and that f : X → RP∞

classifies its universal covering X̃ → X (see Wall [10, Corollary 2.3.2] to justify this much
Poincaré surgery).

4. The form B(a, b) = 〈a ∪ T ∗b, [X]〉 is a symmetric unimodular bilinear form on

H2(X̃,Z), where T denotes the non-trivial covering involution. The form B is even
(see Bredon [1, Chap VII, Theorem 7.4]).

5. The invariant A(X, f) is the Arf invariant associated to the Browder-Livesay quadratic
map q (see [2, §4], and [4, Theorem 1.4]), which refines the mod 2 reductions of B. By
[2, Lemma 4.6], we have

q(a) ≡ B(a, a)

2
(mod 2)

since T : X̃ → X̃ is orientation preserving. But B is an even unimodular symmetic bilinear
form, so the Arf invariant obtained in this way is zero, and we have a contradiction. �

Remark 2.1. To obtain the reducibility results for 3-dimensional PD-complexes, one
can make an appropriate circle bundle construction (which does not affect reducibility)
resulting in orientable 4-dimensional PD-complexes, and then apply Theorem A.
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[10] C. T. C. Wall, Poincaré complexes. I, Ann. of Math. (2) 86 (1967), 213–245.
[11] , Surgery on compact manifolds, second ed., American Mathematical Society, Providence, RI,

1999, Edited and with a foreword by A. A. Ranicki.

Department of Mathematics & Statistics, McMaster University
Hamilton, Ontario L8S 4K1, Canada
E-mail address: hambleton@mcmaster.ca


